Menu Principal:
La ciencia ha avanzado desde que se dibujaban estos desarrollos en los años 70 con compás, escuadra y cartabón hasta el día de hoy que existen programas, como CATIA V5, que hace el desarrollo completo y transfiere las líneas desde el espacio al desarrollo (curvas trasformadas) y viceversa.
Nosotros no vamos a ver el desarrollo con “escuadra y cartabón”, donde había que hacer rotaciones para ver la generatriz en verdadera dimensión, etc.. Eso nos lo da catia v5 directamente.
En el apartado 2 vamos a hacerlo de forma “tradicional” aprovechándonos de lo que proporciona catia pero sin usar (porque algunos pueden no tener la licencia de ese módulo) el comando “Unfold” de la paleta “Developed Shapes”. Veremos el apartado 3 donde aplicaremos todas las herramientas disponibles, incluido este comando “Unfold” y un Excel (ecuación de Clavería C.O.C.) que nos proporciona los datos necesarios, siendo por lo tanto mucho más fácil hacer el desarrollo.
El método para desarrollar estas superficies, consiste en sustituirlas por pirámides inscritas.
Como la curva es mayor que la poligonal, su desarrollo es aproximados por defecto, es decir es más corto que el real.
a) | El ángulo que en el desarrollo formen las generatrices VJ y VM, es igual a la suma de los ángulos planos en que tengamos dividido la cónica. En este caso JVK + KVL + LVM. Pero si hiciéramos muchos mas planos tendríamos una mejor aproximación al ángulo real y esta suma de ángulos sería mayor. A este ángulo le llamamos “amplitud del desarrollo”. |
b) | Según el dibujo, la suma de los segmentos JK+KL+LM (que es igual a jk+kl+lm) es menor que el arco JM, dado que “la línea recta es el camino más corto entre dos puntos”. |
c) | Sólo las aristas laterales (que pasan por los puntos de los vértices de la base de la pirámide sustituta) tiene la misma longitud que la correspondiente generatriz de la cónica. Cualquier otra línea dibujada sobre una cara de la pirámide es menor que la generatriz más cercana dibujada sobre la cónica. |
El error que se produce en el punto b), por defecto, se compensa siempre que podamos sustituir la suma de segmentos por la longitud real del arco en 3D en su transformada.
En CATIA(sin usar el comando Develop):
Veamos un ejemplo de cono oblicuo, al que aplicaremos las teorías aprendidas.
Como esto normalmente se aplica a la calderería, en este oficio se sabe que las líneas de soldaduras deben ser lo más corta posible, es por ello, que supondremos que el desarrollo empezará por la generatriz más corta.
Nos fijaremos en las peculiaridades de la figura:
• | Tiene un plano de simetría. |
• | En dicho plano se encuentra la generatriz más corta y la más larga. |
Pero claro, lo primero que hay que hacer es dibujar el cono oblicuo de directriz circular y CATIA no tiene una feature para esa figura.
Para poder utilizar las tablas, cuyos ángulos están expresados en décimas de grados, debemos asegurarnos que tenemos puesto esos valores en ToolsOptions..
General
Parameters and Measure y en la pestaña “Units”, y en la línea correspondiente a “Angle”, seleccionar “Degree (deg)” (grados, con decimales).
Veamos un proceso, para dibujar esta figura, que tendrá la circunferencia directriz en el plano XY, con centro en origen. El vértice lo dibujamos en el plano YZ.
Como es simétrica, para ahorrar (y porque CATIA se lía con una superficie cerrada), vamos a trazar solo la mitad.
1.- | Dibujamos un semicírculo con centro en Origen, plano soporte: el XY y radio 50mm. |
2.- | Creamos el punto V de coordenadas x=0; y=88; z=142. |
3.- | Dividimos el semicírculo en 6 partes iguales. |
4.- | Unimos cada uno de esos puntos y los extremos con el vértice V. Creamos también la línea del Eje, que nos servirá para determinar el centro de la base paralela. |
5.- | Vamos a dibujar un plano paralelo al XY (plano de la base) lo más cercano posible del vértice. En él trazaremos otro semicírculo semejante al de la base. |
6.- | Usaremos el comando “Multi-sections Surface” seleccionando como “sections” cada una de las generatrices y como curvas “Guides” las curvas de las bases. Lo cierto y verdad, es que, para dibujar la superficie correctamente sólo es necesario 3 generatrices y una curva, por ejemplo, la de la base. Para comprobar que la superficie es correcta, usaremos el comando “Geometric Information” El resto de las generatrices, las necesitamos para hacer el desarrollo aproximado. Bueno: ya tenemos dibujado el semi-cono. Pasemos a ver como se desarrolla. Recordar que, dado que esto está dirigido al uso de la descriptiva en el CAD, consideramos que las longitudes de los elementos la conocemos. |
7.- | Partiremos de la generatriz VA. Por un punto cualquiera v dibujamos una línea de longitud VA. |
8.- | Con centro en v y radio las distintas longitudes de las generatrices conocidas, trazamos unos arcos. En estos arcos estarán los puntos de la transformada de la base.![]() |
Hasta aquí lo exacto.
Ahora vienen las “aproximaciones”. Primera aproximación: Por las longitudes de los segmentos AB, BC, etc...
9.- | Haciendo centro en a, trazamos un arco hasta que corte al otro con radio el segmento AB y obtenemos un punto aproximado. |
10.- | Repetimos este proceso haciendo centro en el último punto hallado para obtener el siguiente punto de intersección.![]() |
Una de las cosas importante en los desarrollos es saber si existen “puntos de inflexión” en la transformada. Esto se averigua por el Teorema de Olivier. Este nos viene a decir lo siguiente:
“Los puntos de inflexión de una curva transformada, que produce un plano secante, se encuentran en los puntos de la misma curva por donde pasan planos perpendiculares a dicho plano secante y que sean tangentes a la cónica.”
¿Cuáles son en nuestro caso?
• | El “plano secante”: La base |
• | y el plano “perpendicular a la base” y que además sea tangente a la cónica.? |
De este último plano sabemos que tiene que pasar por el vértice y ser tangente a la base.
Para averiguarlo, proyectamos el punto del vértice sobre la base y obtenemos la recta tangente a la curva de la base que pasa por esa proyección. Esa recta y el punto V determinan dicho plano.
11.- | Obtenemos también este punto de inflexión usando la misma teoría. La generatriz que pasa por dicho punto define el “contorno aparente” del cono oblicuo sobre el plano de la base. Por otro lado, las generatrices que definen el contorno aparente sobre el plano de simetría (las VA y VG) forman 90 grados con las tangentes por ese punto a la curva de la base. |
12.- | Una vez obtenido todos los puntos, se trazan las tangentes a la curva por dichos puntos. Estas tangentes se determinan por que sabemos el ángulo que forman en el 3D con la generatriz que pasa por ese punto.![]() |
Con todo esto, sólo queda trazar la curva que pasa por estos puntos y que tengan las direcciones de tangencias de sus puntos.
Actualizada, por El Juanri a 16/06/2018 (CATIA Release 27)